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Abstract 
Equations are derived for finding an unknown part of 
the electron density in the unit cell of a crystal when 
part of the structure of its contents is already known. 
These equations are based on the similarity of the X- 
ray diffraction pattern to a hologram. The X-ray field 
scattered by the known part of the structure is identified 
as the holographic reference beam. It interferes with the 
waves scattered from the unknown part of the structure. 
The interference pattern contains phase information that 
can be exploited to recover fully the unknown part of 
the structure. This paper discusses mathematical prop- 
erties of the resulting equations and some methods for 
their solution. A strong similarity to inverse problems 
of image processing is pointed out and connections 
to other known methods of X-ray crystallography are 
established. In paper III [Maalouf, Hoch, Stem, SzSke & 
SzSke (1993). Acta Cryst. A49, 866-871], some modest 
numerical simulations are presented. 

Introduction 
A basic ingredient of crystallographic refinement is the 
recovery of an unknown part of a crystal structure 
from its diffraction pattern when part of the structure 
is already known at least approximately. The traditional 
methods of doing this are widely known and practised 
by crystallographers. This paper presents an altemative 
method based on the similarity of X-ray diffraction to 
holography. The X-ray field scattered by the known part 
of the structure is identified as the holographic reference 
beam. It interferes with the waves scattered from the 
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unknown part of the structure. The diffraction pattern 
detected is analogous to the recorded hologram. As in 
holography, the X-ray diffraction spots are considered as 
a pattern and not individually. Recovery of the unknown 
part is then shown to be a result of the solution of a set 
of equations. The roots of the point of view expressed in 
this paper go back at least to Bragg (1939, 1942, 1944) 
and to Boersch (1939), whose papers were the very 
articles that inspired Gfibor's discovery of holography 
(Gfibor, 1948, 1949). Early work was summarized in 
a book by Taylor & Lipson (1964). Recently, this line 
of inquiry has apparently not been pursued, although 
somewhat related ideas have been presented by Bricogne 
(1988) and Doerschuk (1991). Some of these ideas were 
briefly presented by the author in paper I (Szfke, 1992). 

The present approach has several potentially attractive 
features. The unknowns in the holographic equations 
are the electron density in real space; therefore, it is 
relatively easy to incorporate additional information into 
the solution of the structure. It is shown that, by forcing 
the electron density to be positive, the stability of the 
recovery of the unknown part is improved. Because this 
ensures the positivity of all the Karle-Hauptman deter- 
minants, as well as the correct behavior of all structure 
invariants and semi-invariants, the holographic method 
incorporates part of the information utilized in direct 
methods. It is also shown that the missing part of the 
molecule is recovered, theoretically, to better accuracy 
by this method than by the difference Fourier method. 
In particular, the known part of the structure does 
not introduce a first-order phase bias into the resulting 
electron-density map. The solution of the holographic 
equations is somewhat similar to a Fourier recovery of 
the unknown part, with constraints enforced during the 
recovery, or to the completion of a crystal structure si- 
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multaneously with its refinement. The equations derived 
by our method are very similar in form to well known 
equations of holography, image recovery and inverse 
problems in general. The vast amount of knowledge and 
experience accumulated in those other fields is therefore 
available for utilization in the present problem• Also, 
by analogy with holography, a mathematical analysis of 
crystallographic refinement will be attempted• Finally, 
the holographic method has direct parallels with the well 
known equations of (multiple) isomorphous replacement, 
anomalous scattering, molecular replacement and solvent 
flattening and can be interwoven with them. 

This paper presents a more general derivation of the 
method than was presented in paper I. It also conforms 
to crystallographic notation and includes the explicit 
use of crystal symmetry. The plan of the paper is as 
follows. After a detailed derivation of the holographic 
equations in § 1, some methods for their solution are 
outlined briefly in § 2 and some of their mathematical 
properties are discussed in some detail in § 3. § 4 con- 
nects our method to other crystallographic methods and 
a summary and conclusions are presented in § 5. Modest 
numerical results are presented in paper III (Maalouf, 
Hoch, Stem, SzSke & SzSke, 1993). That paper also 
contains a more detailed discussion of some numerical 
properties of the reconstruction algorithms. 

I .  H o l o g r a p h i c  e q u a t i o n s  o f  X - r a y  c r y s t a l l o g r a p h y  

(a) Notation 

The notation of this paper is similar to that of Brfinger 
(1989). This conforms with existing practice and with 
crystallographic computer code systems such as X-PLOR 
(Briinger, Karplus & Petsko, 1989)• The elementary 
translations of the lattice are denoted by the vectors 
a, b and c, with dimensions of length. Their Cartesian 
components are a~, av, a~ etc. A point in the crystal, r, 
can be written in terms of the basic translations as r = 
x a +  yb  + ze. The row vector of dimensionless fractional 
coordinates is x T = (x, y, z). (The superscript T 
denotes the transpose of a column vector or matrix.) 
The volume of the unit cell is V = (a.  b x c) > 0. 
The reciprocal-lattice vectors are defined, as usual, by 
a* = b x c / V ,  b* = c x a / V ,  c* = a x b / V .  
They are of dimension length -1  and satisfy a .  a* = 
b b* c* a*. a*-  • = c .  = 1,  b = c = . . .  = 0.  

A vector in reciprocal space can be decomposed as 
k/27r = ha* + kb* + lc*. It defines the dimensionless 
row vector of indices h T = (h, k, l). The scalar product 
is k -  r = 27r(hx + ky + Iz) = 27rhTx. (In order to 
conform to crystallographic notation, we write h .  x for 
scalar products.) The 3 x 3 transformation matrix that 
transforms the Cartesian coordinates of r to fractional 
coordinates is denoted 9 v. The transformation is x = 3Or. 
It is easy to see that 9 v = (a* b* c*) T i.e. the rows 
of its matrix are the Cartesian components of a*, b* 

and c*. Its inverse is .~"--1 = (a b c). The corresponding 
transformation in reciprocal space is k/27r = .Trech, 
where .Trec = .T T = (a* b* c*) and its inverse is 
denoted .T* = .Tre 1 = (a b c) T. The space group of 
the crystal has s E CS symmetry operators that are 
denoted 7Z~ and T~, where the rotation matrices and 
translation vectors act in Cartesian coordinate space. 
Similarly, if noncrystallographic symmetry of n E NCS 
elements is present, the corresponding operators are 
denoted ~,~ and rn. The transform of ~ and rs into 
fractional coordinates is O, = . ~ ' T ~ s . ~  " - 1  and ts = 
.Trs. (This notation deviates from that of X-PLOR.) 
When expressed in fractional coordinates, the symmetry 
operators have a simple form. The Bragg condition 
is expressed by h having integer components and by 
[~ 'Th  I = 2s in0/A = 1/dhkt in real space, where 
20 is the angular deflection of the X-ray beam of 
wavelength A. 

The atoms in the molecule are denoted by the index i. 
Their Cartesian coordinates are r~, their atomic scattering 
factors are f i (h) ,  their occupancies are Qi and their 
temperature factors are B~. The crystal structure factors 
are then given by 

F (h )  = E E E Q ~ k ( h ) e x p  (-B~I.~Thl2/4) 
s E C S  n E N C S  i 

× exp{27rih.[Os.T(TCnri + %) + ts]}, (1) 

where the sum over i rims only over an appropriate 
subset of atoms. For brevity, the sums over s E CS 
and n E NCS are not written explicitly. Equation (1) is 
thus simplified to 

F(h) =EQ~A(h) exp (-B~I9 rTh]2/4  ) 
i 

x exp (27rih • .Tri), (2) 

where the index i runs over all the atoms in a unit 
cell. The same structure factors can be derived from the 
equivalent continuous electron density, 

F ( h )  = f p(r) exp (27rih- .Tr)dr.  (3) 
unit cell 

It can be seen that the electron density is 

p ( r l = E O i  f p i ( r ' -  ri)(47r/Bi) 3/2 
i unitcell 

× exp (-4~r21 r - r '12/B0dr  ', (4) 

where the sum is over an infinite lattice and pi(r - r~) 
is the equivalent electron density of atom i centered at 
ri, satisfying the relation 

f i (h)  = fp i ( r )  exp (27rih • .Tr)dr. (5) 

In reality, the electron density of each atom is strongly 
localized. Therefore, the sum in (4) must be carried out 
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for only a single unit cell and a small margin around 
it. Another useful form of (3) is expressed in fractional 
coordinates: 

F(h) = V f p(~'-lx) e x p  (27rih. x)dx,  (6) 
standard cell 

where the integral is over the standard unit cell, 0 < 
x, y, z < 1. 

(b) Derivation of the holographic equations 
Let us now assume that part of the molecule (in fact, 

the contents of the unit cell) is known. The fundamental 
tenet of crystallographic refinement is that at least part of 
the crystal structure is correct. The electron density can 
then be decomposed into a known part and an unknown 
part, p = Pknown + Punknown- In the absence of anoma- 
lous scattering, p is positive everywhere. [Anomalous 
scattering is discussed in § 4(c).] Accordingly, structure 
factors can be defined for the known and unknown parts 
as follows: 

R (h) = f Pknown(r) exp (21rih- .T'r)dr, (7) 
unit cell 

O(h) = f Punknown(r) exp (27rih..Trr)dr. (8) 
unit cell 

We make the customary assumption that the measured 
diffraction intensities can be corrected to give the squared 
magnitudes of the structure factors, [F(h)l 2, at least to 
Within an unknown scale factor. In the notation of (3), 
(7) and (8), 

[F(h)l  z = [R (h) + O(h)l  2 

= IR (h)l 2 + R (h)O*(h)  + R * ( h ) O ( h )  

+ IO(5)12. (9) 

Let us investigate the meaning of (9) as a function of 
h, i.e. as a function of the magnitude and direction of 
the momentum transfer vector k of the scattered X-rays. 
This means that we are interested in the magnitudes 
and phases of the structure factors not individually 
but as a pattern. This point of view emphasizes the 
well known fact that F (h )  represents the diffraction 
pattern of the unit cell and that the Bragg condition, 
which restricts h to have integer components, produces 
a sample of this diffraction pattern [see, for example, 
Taylor & Lipson (1964) and Blundell & Johnson (1976)]. 
It is also noticeable that (9) is very similar to the 
basic equation describing the intensity of a hologram 
on a screen (Sz6ke, 1986). The first term on the right- 
hand side of (9), arising from the known part of the 
structure, is analogous to the intensity of the reference 
wave on a holographic screen; the second and third 
terms together are recognized as the linear part of the 
usual hologram; and the last term is the self-interference 
of the object. Note that all three groups of terms are 
individually real. There are two substantial differences 

from traditional holography (Gfibor, 1949). First, the 
'hologram' is 'recorded' on a volume screen, h being a 
three-dimensional vector. Second, while in usual holog- 
raphy the reference wave is simple, R (h), which is the 
diffraction pattern of the known part of an arbitrarily 
complicated molecule, is itself very complicated. Despite 
these differences, (9) describes a hologram and therefore, 
in some sense, the full holographic information concem- 
ing the phases and amplitudes of O(h) is recorded in 
it. Nevertheless, traditional methods of recovering this 
information fail because of the aforementioned differ- 
ences from usual holography. It is therefore necessary 
to develop new ways to recover the full information 
present in the hologram. 

We define a 'hologram' H(h )  by collecting the known 
terms in (9) to the left-hand side: 

H ( h )  = [F(h)l  2 - IR (h)l 2 

= R(h )O*(h )  + R*(h)O(h)  + IO(h)l 2 (10) 

The unknown part of the effective electron density 
(of the molecules) in the unit cell is decomposed, ap- 
proximately, into basis functions of known shapes but 
unknown magnitudes. The set of basis functions has to 
be complete enough to approximate well the electron 
density of any molecule. A simple and plausible repre- 
sentation of the electron density, which is everywhere 
positive, is a collection of Gaussian basis functions 
centered on a three-dimensional grid spanning the unit 
cell of the crystal. The grid points are equidistant in 
the directions of the three crystal axes, their distances 
being Ar. Centered on each grid point, rp (p = 1, P) ,  
there is a Gaussian electron density of radius rll/2Ar, 
where r / is  a parameter of order unity. [The magnitude 
of Ar  and the choice of Gaussians as basis functions 
are discussed in §§ 3(a) and 3(b).] The parallelepiped 
surrounding rp is called a voxel in the parlance of signal 
processing. The unknown quantity, np, is the number 
of equivalent scattering electrons in the pth voxel. This 
yields the formula 

Punknow.(r) Papp,ox (r) 
--- (71-T] A t 2 )  - 3 / 2  

P 
x ~--~np exp ( - I  r - rpl2/rlZlr2). (11) 

p=l  

The decomposition takes into account the fact that the 
electron density is real and occupies a finite volume. 
Equation (11) can be substituted into (8) and the ap- 
proximate complex diffraction pattern of the unknown 
electron density calculated: 

O(h)=(TrrlAr2)-3/2~n f ( - [ r - r p [ 2 )  Z-~ P exp ~ ~z~r- ~ 
p=l  unit cell 

x exp (27rih • ~'r) dr. (12) 
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The integral in (12) can be carded out for any given set 
of basis functions. For a Gaussian basis set, it can be 
done analytically, in closed form. The result is 

(Trr]Ar2)-3/2 f exp ( - l r  - rv[2 )exp (27rih.~r)dr 
unit cell r / A r 2  

= exp [ -~(1rAr  ~ ' T h  )2] (2:rih..~'rv) , (13) 

which is a windowed Fourier transform of a single 
electron at r v. The result can be substituted into (10) 
to give 

P P 
U(h)  = ~_,npMp(h) + y~ npnqQpq(h). (14) 

p=l p, q=l 

This represents a set of equations with P unknowns, np. 
The number of equations, Nh, is the number of measured 
X-ray reflections. The first term on the right-hand side 
of each of these equations, as a function of h, has an 
attractive interpretation. It is a sum over 'elementary 
holograms', Mp: 

Mp(h) = e x p  [-~(:rAr ~'Th[)2 ] 
x [R (h) exp (-27rih • ~'rp) 

+ R*(h )exp  (2~rih..T'rv) ]. (15) 

The elementary holograms are the result of a compli- 
cated reference beam, R (h), interfering with the wave 
scattered by a single electron located at rp. The decom- 
position results in a set of equations whose unknowns, 
np, are real quantities defined on a grid in real (rather 
than reciprocal) space. 

The matrix Qpq appearing in the second term on the 
right-hand side of (14) can also be calculated explicitly. 
For Gaussian basis functions, it is 

Qpq(h) = e x p  [-2r/(TrAr .T'Th )2] 

x exp [2:rih • ~ (rp - rq)]. (16) 

Reconstruction of the missing part of the molecular 
structure is accomplished by solving (14). It is a quadratic 
equation; various methods of solving it are discussed 
briefly in § 2 and in more detail in paper III. 

2. Interlude: methods of solution of the 
holographic equations 

In this section, some methods for solving (14) are 
reviewed, following standard mathematical texts. This 
is done in order to introduce some notions and collect 
them for later reference. A more detailed discussion of 
the algorithms and their properties is presented in paper 
III. The methods of solution are listed roughly in order 
of sophistication. 

Equation (14) represents a set of nonlinear equations. 
Direct nonlinear methods exist for the solution of these 
equations (Luenberger, 1984) but these are not discussed 
in this paper. Rather, the quadratic term is initially 
neglected, resulting in a set of linearized equations 

P 
H(h)  = ~ n v M p ( h ) ,  (17) 

p=l  

except for the h = (000) term, which always includes 
the quadratic term. If the grid spacing, Ar, is coarse 
enough, (17) represents a set of linear equations with 
more equations (the number of reflections) than un- 
knowns (the number of lattice points.) In other terms, the 
matrix Mh,v = My(h) has more rows than columns. In 
general, such equations have only minimum discrepancy 
solutions. Such solutions minimize a 'cost function' that 
is the sum over all reflections of the squared differences 
between the left- and right-hand sides of (17) with 
positive weights w(h)2: 

2 

f = )-~w(h) 2 H ( h ) -  ~_,npMp(h) w(h) 2. 
h p=l 

(18) 
The set of densities np that minimizes f is usually not 
unique so the cost function usually has to be supple- 
mented with other conditions. In very simple terms, 
nonuniqueness of n v is a manifestation of the phase 
problem of crystallography. We discuss below how to 
use positivity of the electron density, knowledge of 
solvent regions etc. to find a correct and unique mini- 
mizer of f. Much of the paper is devoted to elaboration 
of this subject. 

There is extensive mathematical literature on the 
solution of (17) [see, for example, Golub & Van Loan 
(1989)]. There are also well developed and widely 
available computer programs (Dongarra, Moler, Bunch 
& Stewart, 1979). After the minimum of the function 
in (18) (with the appropriate supplementary conditions) 
has been found, the newly found electron density can 
be added to the known part of the structure and the 
procedure iterated. If the procedure converges, it solves 
the original quadratic equation, (14). 

(a) Solution by QR decomposition 
Two fundamental difficulties arise in the solution of 

(17). First, the matrix can be rank deficient, i.e. the 
columns of Mh,, can be linearly dependent. In such 
cases, there is a least-squares solution for each set of 
independent columns. The QR decomposition method 
(Golub & Van Loan, 1989; Dongarra et al., 1979) 
chooses an independent set of columns and finds the 
solution for it. It is usually important to obtain several 
sets of solutions but it can be difficult to provide criteria 
for their proper choice. Second, the matrix can be ill 
conditioned. The condition number is the ratio of the 
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largest to the smallest singular value of the matrix Mh, p. 
If this is very large (105 or more), the solution is 
inordinately sensitive to a small amount of inaccuracy 
in the values of the measured reflections. Available QR 
decomposition subroutines (LINPACK; NAG, Mayfield 
House, 256 Banbury Road, Oxford OX2 7DE, England, 
and IMSL Inc., 7500 Bellaire Boulevard, Houston, TX 
77036-5085, USA) allow control of the stability of the 
solution by limiting the acceptable ratio of the largest to 
the smallest singular value. This limits the size of the 
independent subset of columns. 

(b) Solution by singular-value decomposition 

The most general and reliable way to control the so- 
lutions of rank-deficient and ill-conditioned linear equa- 
tions is the singular-value decomposition method [Golub 
& Van Loan (1989), p. 71; Dongarra et al. (1979)]. The 
matrix Mh, p C a n  always be written as U T M V  = S ,  
where S is a diagonal matrix of elements ai > 0, in 
nonincreasing order. U is an orthogonal Nh x Nh matrix 
whose columns are called the left singular vectors, ui. 
V is also an orthogonal P x P matrix whose columns 
are the right singular vectors, vi. We also assume that 
Nh > P and the number of independent columns of 
Mh, p is denoted r. The vector of the fight-hand side of 
(17) is denoted H. The weighted sum 

7" 

n = )-~wi(uTH/o'i)vi, (19) 
i = 1  

with weights w~ = 1, is called the least-squares solution 
of (17). It produces the (unique) electron density np 
that has a minimum norm and is consistent with the 
minimum discrepancy criterion, (18). The formula shows 
quite clearly that, if the singular values are small, i.e. the 
matrix is ill conditioned, the solution is very sensitive to 
the magnitudes of the components of H along the left 
singular vectors corresponding to small relative values 
of a. In practice, a cutoff criterion is applied to ai: the 
weights wi are set to zero if the singular values are too 
small, if ai/al  < c. The number r of unit weights 
is the practical rank of the matrix M. The singular- 
value decomposition can also be obtained as a subroutine 
[LINPACK; Dongarra et al. (1979)]. It is computationally 
very stable but runs relatively slowly. Its importance is 
that it gives a very clear picture of the practical rank 
of the computations. Both the QR decomposition and 
the singular-value decomposition depend only on the 
matrix Mh, p, not on the measured reflections, H. The 
right singular vectors, vi, for the nonzero (large) values 
of ai, span the subspace of the unit cell that can be 
reconstructed stably from the known part of the electron 
density. 

(c) Solution by non-negative least squares 

Extemal information restricts the solution space of 
(17). In our method, it is very easy to restrict the electron 

density to non-negative values by supplementing (18) 
with the set of equations 

np>O,  { p E P } .  (20) 

There are very efficient subroutines available (from the 
SLATEC program library) that use QR decomposition of 
the matrix Mh, p and an active set of positive elements 
of np. When, during the conjugate gradient optimization, 
any of the components of the solution become zero, the 
program finds a new nonzero component (if there is 
one), updates the QR decomposition and then continues 
(Lawson & Hanson, 1974.) 

(d) Solution by linear programming 

In the three preceding methods, the discrepancy be- 
tween the measured and calculated diffraction patterns 
was taken to be the mean-square difference of those 
intensities. It is possible to define the discrepancy to 
be the absolute difference of their absolute magnitudes. 
Together with the non-negativity of the electron density, 
this reduces the recovery of the electron density in 
a crystal to the standard linear-programming problem 
(Luenberger, 1984). Following SzSke (1993), Saldin, 
Chen, Kothari & Patel (1993) have recently applied this 
algorithm very successfully to the analogous problem of 
photoelectron holography. 

(e) Fast algorithms 

Some conjugate-gradient optimizers do not use a 
decomposition of the matrix. They can be started with 
a steepest-descent step and continued with the steep- 
est gradient in the orthogonal space (Golub & Van 
Loan, 1989). There are also Lanczos-type algorithms 
that improve on steepest descent and decompose the 
matrix only partly. Recently, Goodman, Johansson & 
Lawrence (1993) have developed a conjugate-gradient 
algorithm that works very efficiently in the presence of 
positivity constraints. It was recognized that the prod- 
uct ~ Mh, pnp can be evaluated efficiently using fast 
Fourier transforms. Although the 'ordinary' conjugate- 
gradient algorithm is slower than the one using QR 
decomposition, in very large problems the use of fast 
Fourier transforms increases the speed of computations. 
Our experience with this method will be reported in 
a forthcoming publication (Goodman, SzSke, SzSke, 
Somoza & Kim, 1993). 

3. Mathematical discussion: sampling, noise, 
stability of solutions and incorporation of 

additional information 
In this section, the main thread of the paper is continued 
with a discussion of the mathematical properties of the 
holographic equations. The most important point has 
already been made in § 2: the reconstruction of the 
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unknown part of the molecule by the holographic method 
is analogous to many of the inverse problems of ap- 
plied mathematics. The ubiquitous difficulties of inverse 
problems are their ill conditioning, especially in the 
presence of experimental errors and noise. In addition, 
the restriction of h to integer components makes the X- 
ray reconstruction problem ill defined (undersampled). 
It should be stressed that these difficulties are inherent 
in the task at hand and are not a consequence of our 
particular appproach. 

(a) The sampling theorem and the phase problem of 
crystallography 

Suppose both the magnitudes and the phases of the 
structure factors of a crystal are known within a cube in 
h space of extent + A h  along each axis. The correspond- 
ing resolution limit is dman= )~/2sin0ma.x = lal/zah 
etc. along each of the axes of the reciprocal lattice. The 
number of independent data, in the absence of anomalous 
dispersion, is Ndata = 8(V/dmain) (Stout & Jensen, 
1989; Millane, 1990). The number of lattice points in 
the unit cell is Np = V / A r  3 [see (11)]. The lattice 
spacing Ar  can be defined so that, with knowledge 
of the phases and magnitudes of all reflections, the 
electron density is well defined. Setting, therefore, Np = 
Ndata gives Ar -- dmin/2 = la l /2Ah etc. This also 
equals the number of Fourier coefficients within the 
spatial resolution 1/drain along each axis of the crystal 
lattice. If the structure factors outside the cube are zero, 
i.e. if the crystal diffracts only to an angle 0m~x, the 
reconstruction of the electron density is unique. This 
follows from the sampling theorem (Shannon, 1949; 
Jerri, 1977), which states that a function p of the 
coordinates r can be reconstructed exactly from its 
measured (sampled) values if and only if (a) its Fourier 
transform is bandwidth-limited to a (spatial) frequency 
of 1Idea and (b) the samples are closer than drain/2.  

Since only the amplitudes of the structure factors can 
be measured, it is clear that any choice of phases, within 
restrictions imposed by space-group symmetry, produces 
a real electron density. In this sense, the crystallographic 
phase problem is a difficult one. It is shown below how 
the .presence of a known part of the electron density 
ameliorates the phase uncertainty but does not eliminate 
it entirely. 

Two remarks are in order. First, the situation in 
low-energy electron diff action (Van Hove, Weinberg & 
Chan, 1986) seems to be even worse because the atomic 
potentials causing electron scattering are generally com- 
plex and several parameters are needed to describe them. 
The problem can be ameliorated if the shape of the 
atomic potential is known; in fact, techniques similar to 
the ones described in this paper are applicable (SzSke, 
1993). Second, in ordinary holography, the number of 
samples is not limited a priori; therefore, by sampling 
the hologram finely enough on the recording screen, the 

object can be reconstructed perfectly, if and only if the 
dual image can be eliminated. This covered more fully 
in § 3(c). 

(b) Basis functions 

The derivation presented in this paper used a set of 
three-dimensional Gaussian basis functions with their 
centers located on a three-dimensional grid with spacing 
Ar  in the three principal crystal directions. Their width 
was set to be rll/2Ar. The choice of 7? depends on 
the character of the electron distribution that is to be 
reconstructed. For example, if the missing atoms are 
known to be at the centers of the Gaussians, the best 
choice is r / A t  2 = B/47r 2. When it is expected that the 
electron distribution is smooth on the scale of the voxel 
size, Ar,  the best choice is 7/ = 0.36; this choice is 
equivalent to the Rayleigh criterion for the resolution of 
Gaussians in one, two or three dimensions. 

A general approach to the choice of nonorthogonal 
basis functions has been formulated by mathematicians. 
The requirement for a good basis set is that the ba- 
sis functions approximate well the classes of electron 
densities encountered in crystals. Such basis sets are 
called 'tight frames'. They are discussed in several 
articles about wavelets. See, for example, Daubechies, 
Grossman & Meyer (1986) and Daubechies (1992). An 
article by Walter (1992) discusses the relation of the 
requirement for a tight frame and the sampling theorem 
discussed in § 3(a). From all the references cited, it is 
clear that wavelet frames are eminently suitable for the 
reconstruction of electron densities in crystals. This will 
be a subject of future investigations. 

(c) The holography connection 

Further light is shed on our method by a review of 
the (idealized) traditional recovery method of holography 
and its limitations (G/~bor, 1949). Holography is a two- 
step process. In the first step, a hologram is recorded. 
The intensity of the recorded hologram is given by 
(9). If the intensity of the reference wave is subtracted, 
the 'net' hologram of (10) is obtained. For the present 
discussion, a strong reference beam is assumed and the 
self interference of the object wave is neglected. This 
results in the hologram intensity 

H(h)  = IF(h)l 2 - I R  (h)l 2 

= R * ( h ) O ( h ) -  R (h)O*(h),  (21) 

which is the same approximation as (17). In the sec- 
ond step of Gfibor's reconstruction, the hologram is 
illuminated by a replica of the reference wave. The 
wave transmitted through the hologram is obtained by 
multiplying (21) by R(h) :  

R ( h ) H ( h )  = [R (h)120(h) + R (h)20*(h).  (22) 
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Suppose the reference is the structure factor (scattered 
wave) produced by a single-point scatterer of scattering 
factor Ro located at position ro. This results in a 
reference wave 

R ( h )  = Roexp(27rih..T'ro). (23) 

Division of (22) by 2[R(h)[ 2 from (24) results in 

R ( h ) H ( h ) / 2 R  2 

= ~-[O(h) + O*(h)exp (47rih. ~'ro)]. (24) 2 

Substituting from (8) for the unknown electron density 
and taking into account the fact that Punknown(r) --~ 
Papprox(r) is real, we have 

R ( h ) H ( h ) / 2 R  2 = ~ papprox(r) exp (27rih..T'r) dr  

+ fp~pprox(r) 

x exp [27rih.Y z (2ro - r)] d ry .  
,$ 

(25) 
The second integral can be transformed by the substitu- 
tion 2 r o -  r -+ r, giving 

x { f  (27rih .T'r) dr  R(h)H(h)/2R2o = 5 Papprox(r) exp • 

"}- f Papprox (2ro - r ) 

X exp (27rih • .T'r) dr  / . 
% 

(26) 

This equation can be solved by discrete inverse Fourier 
transformation if and only if the conditions of the 
sampling theorem [the Nyquist conditions; see § 3(a)] 
are satisfied. The result is the sum of two densities 
symmetrically located around the reference point, ro. 
The reference point, in fact, introduces a center of sym- 
metry. The analog in X-ray diffraction is well known: 
the symmetry of the diffraction pattern is the Laue 
group; it cannot distinguish between two enantiomorphic 
arrangements of atoms in the molecule. In holography, 
this doubling of the image has been known ever since 
G~bor's original papers (G~bor, 1948, 1949). 

The image obtained by G~bor's reconstruction is 
not the most general holographic image, i.e. it is not 
the most general solution of (21). In fact, it is easily 
seen that any linear superposition of the two images, 
p(r) = (1 - #)Papprox(r) + #Papprox(2ro - r), with ar- 
bitrary #, satisfies (21). In holography using laser light, 
the reference point is usually shifted so far away that 
the dual image does not overlap the real one (Leith & 
Upatnieks, 1962). If the spatial extent of the original 
image is known, it can be used as a constraint in the 
solution of (21). This results in the setting of # -~ 0, 
by which the correct image is obtained, uncontaminated 
by its dual. 

However, in X-ray crystallography, the two images 
overlap to a large extent. Also, in X-ray crystallo- 
graphic reconstruction, the reference wave R ( h )  = 
[R (h)[ exp [iqa(h)] is complicated. In order to analyze 
this situation, Ghbor's procedure, valid for a single 
point scatterer, is generalized. Equation (22) is formally 
divided by 2[R(h)l 2, giving 

R (h )g (h ) /21R  (5)12 

= ' { O ( h ) +  [O ' (h )R(h )~ / IR(h ) l~ ] ) .  ,27,  

The term R(h)21}R(h) l  2 = exp[2i~o(h)] is a pure 
phase term that is never singular. The term on the left- 
hand side becomes singular if IR (h)l z ---+ 0 and if F (h )  2 
does not vanish (for the same h) at least linearly. This is 
a manifestation, in h space, of the ill conditioning of (27) 
or, equivalently, of the original equation (17); in other 
words, a manifestation of the poor phasing power of the 
particular Fourier component R (h) of the reference. 

The two terms on the fight-hand side are now viewed 
as the diffraction patterns of the real image and of the 
(holographic) dual image. It follows from (8), (11), (12) 
and (13) that 

O(h) = f papprox(r)exp (21rih..T'r) dr. 
unit cell 

(28) 

From O ( - h )  = O*(h), it follows that p~pprox(rp) is real. 
The dual density is defined implicitly by 

O*(h)exp[2i~o(h)]-  f Pdual(r)exp(27rih" ~ ' r )d r ;  
unit cell 

(29) 
again, Pdual(rp) is real. 

The dual image has important properties: it is a linear 
function of papprox(rv), but a nonlinear function of R (h). 
For a complicated reference, the positivity of Papprox (rp) 
does not imply positivity of Pdual(rp). The magnitude of 
each structure factor of the dual image is the same as that 
of the correct image; in particular, it follows (from the 
h - 0 component) that the two images have the same 
total number of electrons. It is easy to verify that our 
definition of the dual image tends to its correct limits: 
when the reference is a single point, it is the image 
centrally inverted with respect to that point [(26)]; when 
the reference disappears, it is the enantiomorph. It should 
be noted that all the preceding properties of the dual 
image are unchanged when the I OI 2 term is included. 

In analogy to holography with a simple reference, 
Ghbor's reconstruction method, (27), does not produce 
the most general solution of (21). The 'back transform' 
of (27), even if its singularity can be dealt with, always 

1 gives the superposition ~[Papprox(rp) + Pdual(rp)]- [It is 
shown in § 4(a) that the difference Fourier method has 
a very similar property.] 

It is well known from linear algebra that the most 
general solution of (21) is the unique solution composed 
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of nonzero singular vectors of the operator Mv(h ) of 
(17), augmented with an arbitrary vector from its null 
space. The unique least-squares solution was presented 
in (19). For the general treatment, we refer the reader to 
Golub & Van Loan (1989, p. 71). 

In order to establish the connection between the 
formulation using linear algebra and the holographic 
analogy, we observe that 

Re [R*(h)O(h) - R (h)O*(h)] - O. (30) 

Therefore, addition of any p~pprox(rv)- Pdu~l(rp) as 
defined in (28) and (29) cannot change the discrep- 
ancy between the two sides of (21). It can also be 
seen that the operator Mp(h) of (17) operating on 
papprox(rv) - pd~l(rv) gives identically zero. As the set 
of singular vectors of Mv(h ) belonging to zero singular 
values provides an orthogonal basis of its null space, 
it follows that there is a one-to-one correspondence 
between the most general papprox(rv) -- Pdual(rp) and the 
null space of the linearized holographic operator. As any 
Papprox(rp) + Pdual(rp) is independent of Papprox(rp) -- 
Pdual(rp), it follows that the solution of (27) by Ghbor's 
reconstruction is a superposition of singular vectors in 
the non-null space of Mv(h ), so it is similar to (19), 
except that its singularity is not controlled. 

The number of independent null vectors of Mp(h) 
is denoted N~ull. According to the discussion in § 3(a), 
in X-ray crystallography, Nnun > P. If the orthogonal 
basis of right singular vectors of the null space is denoted 
Vnuu, j, the most general real solution of (17) is given by 

Nnull 
p(rp) = ½[Papwox(rp) + Pdual(rv)] + E #jV~uH, j, (31) 

j = l  

1 where from now on 7[p~pp~ox(rp)+ Pdual(rp)] denotes 
the particular solution of (27) or, more correctly, 
the result of (19) and where the #j are a set 
of arbitrary real numbers. The particular solution 
½[P~pwox(rp) + Pdu~l(rp)] has a 'conjugate' null image 
7[p~pp~ox(rp)- Pdual(rp)]. If this null vector is singled 
out and the rest of the null space orthogonalized to it, it 
can be seen after a small amount of algebra that the most 
general solution of (17) may be written equivalently as 

p(rp)  = ( i  - .)Papprox(rp) + .Pdual(r ) 
NnuH- 1 

+ ~ #jVnuXl,~, 
j = l  

(32) 

where #, #j are again a set of arbitrary real numbers. 
In this notation, the 'correct' solution is /z --- #j = 0, 
while the minimum-norm least-squares solution, (19), is 
# = ½, #j - 0. Note that, from the point of view of 
information theory, there are still NnuH pieces of missing 
information. The gain in the ease of completion of the 
structure with respect to the ab initio phase problem 

mentioned in § 3(a) follows from the ease of inclusion of 
additional information that restricts the solution space. 

(d) Convergence and stability of the holographic method 

In the limit of very fine resolution, even if the sam- 
piing theorem is satisfied and the quadratic term can be 
neglected, the set of holographic equations becomes a 
Fredholm integral equation of the first kind. (Most linear 
inverse problems have this property.) Such equations 
are very often ill conditioned. Ill conditioning implies 
that the solution is extremely sensitive to inaccura- 
cies of measurement and to noise. In the presence of 
noise there are usually no solutions to (14) at all. This 
is expressed mathematically by the statement that the 
measured (noisy and inaccurate) left-hand side of (14), 
H(h) ,  is outside the range of the operator on the right- 
hand side. The best one can do is to define a measure of 
discrepancy between the two sides of the equation and 
minimize it. This is well known and accepted in many 
fields including that of X-ray crystallography; it is the 
basis of R factors, least-squares refinement, simulated 
annealing etc. 

In general, the sensitivity of the solutions to noise 
is inversely proportional to the component of the noise 
along singular vectors that correspond to small singular 
values [as shown in (19)]. A properly selected filter 
function stabilizes the solutions. This procedure is called 
regularization (Sabatier, 1987) and the solution obtained 
is called a quasisolution. It has been shown that, at least 
for homogeneous linear inverse problems, the proce- 
dure is general and optimal [see, for example, Donoho 
(1992)]. As is shown in paper III, the holographic 
algorithm is remarkably insensitive to noise or missing 
information. The fact that the noise is essentially decom- 
posed into components along various singular vectors 
makes the performance of the holographic reconstruction 
in the presence of noise optimal among linear algorithms. 

A quantitative discussion of the errors of the holo- 
graphic method will now be presented without positivity 
constraints. In the linearized approximation, (17), the 
formal solution is given by (19). The reference (the 
known part of the structure) determines the matrix Mh, p; 
therefore, it determines the singular values and both 
singular vectors. From the sampling theorem, it follows 
that about half the singular values are practically zero. 
The distribution in magnitude of those that are nonzero 
determines the stability of the reconstruction. It was 
indicated in § 3(c) that the ill posedness of the recon- 
struction depends on the magnitudes of IF(h)I 2/IR (h)l. 
In particular, in the presence of experimental uncertain- 
ties (noise, systematic errors) of magnitude e = [AF/FI, 
a similar cutoff should be applied to (19): if r is the last 
index for which cq/al > e, one should set wi -- 0 for 
i > r. The quality of the reconstruction then depends on 
the set (uTH) for i > r and on the maximal span of 
the singular vectors, vi, for i < r. 
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The residual sum of squares remaining after the 
solution is given by 

Nh 
f =  E (uTH) 2- (33) 

i = r + l  

The magnitude of this residual is governed by the 
projection of the hologram on the part of the space 
that is spanned by the left singular vectors belonging 
to the small (or null) singular values. This is the part 
of the structure that cannot be reconstructed stably 
from the known atoms. Equation (19) minimizes the 
residual within the subspace spanned by vi for i < r. 
The curvature of the discrepancy surface is given by 
M TM = [ V T272V. The curvature of the surface 

at its minimum point depends on the smallest singular 
value (squared) that is included in the solution. The 
value of the minimum also depends on the object being 
reconstructed, as can be seen from (33). The stability 
of the reconstruction depends on the ratio of these two 
quantities. Therefore, the reconstruction is expected to be 
stable if the reference is 'good' and the unknown part 
of the structure is small. Conversely, the holographic 
method without additional information will fail if the 
known part is 'bad' or weak and most of the structure 
is unknown. 

When additional information is used, the only simple 
statement that can be made is that the solution will be, in 
general, more stable. While the discrepancy surface has 
only a single minimum when the linearized equation (17) 
is used, both positivity constraints and the quadratic term 
in (14) may produce multiple minima. If that happens, 
the location of minima corresponding to different initial 
values or the use of simulated annealing may be called 
for. 

(e) Uniqueness of the solution and additional information 

To restate (32): in the absence of additional in- 
formation, the solution of the crystal structure is a 
superposition of the correct image and its holographic 
dual image with indefinite proportions, additionally cor- 
rupted by other solutions belonging to the null space of 
the operator in (17). There is no contradiction between 
this statement and known theorems of 'phase recovery' 
(Stark, 1987; Millane, 1990; Fienup, 1991). It is usually 
stated in those theorems that the recovery in three 
dimensions is unique, except for an arbitrary translation 
of the image and its enantiomorph. (in direct methods, 
the assignment of phases to four reflections is used to 
fix these parameters.) The presence of a known part does 
fix the translation; the ambiguity of the molecule and its 
enantiomorph is translated into an ambiguity between the 
correct image and its holographic dual, as defined in (28) 
and (29). It is not usually emphasized in the literature 
that these two images, and even linearly independent 
parts of them, can occur with any proportions. In fact, 

in the absence of additional information, there is no a 
priori way to fix these proportions. One of the attractive 
features of the holographic method is that additional 
information can be used relatively easily and explicitly. 

Different methods of solution, discussed in § 2, in- 
troduce different constraints; therefore, they produce 
different results. The QR decomposition produces the 
least-norm solution in a predetermined subspace. The 
singular-value decomposition of (19) gives the least- 
norm solution that can be obtained from a linear combi- 
nation of nonzero singular vectors. As discussed above, 
it is the sum of the correct density and a dual image 
that is 'garbage' when the reference is complicated. The 
'garbage' part of the solution has, in general, substantial 
negative density in several places in the unit cell. This 
is observed in our numerical calculations using singular- 
value decomposition. It is also very similar to results 
obtained with difference Fourier maps [see § 4(a)]. 

The easiest constraint to incorporate into the holo- 
graphic method is the location of the missing part 
of the molecule. (This is also the constraint used in 
traditional holography.) For example, in molecular re- 
placement the missing part of the molecule should be 
outside the volume occupied by the known part. In the 
holographic method, the solution grid can be restricted 
to this volume and fewer unknowns are then needed 
to find the unknown density. The situation is similar 
with solvent regions. In the approximate regions of the 
disordered solvent, the density of electrons can be set 
to a constant and the number of unknowns decreases 
in proportion. The location of solvent-macromolecule 
boundaries is not critical. If the assumed solvent region 
is too small, some values of the unknowns will be found 
to be constant, while if the assumed solvent region is 
too large, not all the macromolecule will be found. Both 
errors should be easily correctable by iteration. 

Constraining the density to be positive everywhere 
will, in the presence of a complicated reference beam, 
constrain the solution to values of # # ½ in (32). In 
particular, if the reference beam is strong enough and 
complicated enough or if the correct electron density 
is clumped, i.e. if it is zero in a sizable fraction of 
the unit cell, we can expect the only values in (32) 
compatible with positivity to be # = #j = 0. Thus, the 
dual image is eliminated. All our numerical calculations 
bear out this expectation, as is elaborated in paper III. 
It is interesting to question the strength of the positivity 
constraint. We note that the solution of relatively small 
molecules by direct methods relies largely on the pos- 
itivity of the electron density. Sj~51in, Prince, Svensson 
& Gilliland (1991) reported that positivity constraints 
are sufficient to solve large molecules with reliable 
high-resolution data to 1.6 /~. In a recent publication, 
Baker, Krukowsky & Agard (1993) claim that, if the 
diffraction pattern is known to only moderate (2.5-3.0/k) 
resolution, even positivity and atomicity together are not 
enough to yield a tmique structure for relatively large 
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molecules. Positivity constraints have also been used in 
some versions of density modification (e.g. Tufinsky, 
1985). An interpretation of the relation between these 
methods and the present one is that in the holographic 
method positivity is used in the 'inner loop' while in 
density modification it is used as a nonlinear filter. 

Another constraint that could easily be incorporated 
is that of a maximum electron density. If there is appre- 
ciable thermal motion, or if such motion is introduced 
artificially in order to limit the resolution of both the 
experimental data and the solution, there is an easily 
estimable maximum to the electron density. The value 
of the maximum can be used in a very similar fashion 
to the positivity constraint. 

The ultimate goal of all methods is to incorporate as 
much chemical knowledge as possible into the solution 
of the crystallographic problem. The converse of this 
statement is no less important: if the diffraction pattern 
of a protein can be incorporated directly into the ab initio 
calculation of its spatial structure, the 'protein folding' 
problem will become much easier to solve. 

Recently, there have been very interesting develop- 
ments that try to incorporate at least some chemical 
knowledge early on. See recent works by Jones, Zou, 
Cowan & Kjelgaard (1991), Doerschuk (1991), Lee & 
Subbiah (1991), Subbiah (1991, 1993), Hinds & Levitt 
(1992), Levitt (1992) and Wilson & Agard (1993). The 
incorporation of similar methods into the holographic 
algorithm would be a very exciting development. 

4. Connection to other methods in crystallography 

There are close similarities between the holographic 
method and the difference Fourier method of recovering 
the unknown atoms of a crystal. Also, multiple isomor- 
phous replacement, anomalous dispersion and molecular 
replacement (Blundell & Johnson, 1976; Ladd & Palmer, 
1985; Stout & Jensen, 1989) can be discussed from 
a holographic point of view. These connections are 
analyzed in the following subsections. 

(a) Difference Fourier method 

The difference Fourier method in its many varieties is 
an important tool for the completion of a partly known 
structure. Its great advantage is its provision of a well 
defined density even when the Nyquist criterion (of the 
sampling theorem) is not satisfied. The prescription is 
to make the magnitude of the structure factors of the 
known plus the unknown parts agree with observation 
and to set the phases of the structure factors to the only 
readily available ones, i.e. those of the known part. The 
hidden assumption that makes the problem well defined 
is that the structure factors of the unknown part are of 
minimum magnitude. We denote the structure factors 
of the unknown part of the crystal, as obtained by the 

difference Fourier method, by £2 (h). Algebraic- 
'ally, 

g2 = ( I F I -  IRI)(R/IRI). (34) 

It is easy to see that 1"2 satisfies (10) identically. From the 
discussion leading to (32), it follows that it is interesting 
to enquire which of the many solutions 1"2 corresponds 
to. It is shown now that the difference Fourier solution 
is very similar to Ghbor's (1948, 1949) solution, (27). 
Substitution from the identity, (10), yields 

s2 =IRI/(IFi  + iRI) 

Comparison of (35) with (27), (28) and (29) shows that 
the solution of (34) by Fourier transformation produces 
an equal sum of the correct structure and of the 'garbage' 
dual image mentioned in § 3(c), both convolved by the 
Fourier transform of [R[/([F[ + DR[). It is easy to 
see that multiplication of the left-hand side of (27) by 
[R]/([F[ + [R]) gives exactly D. Such a factor also 
eliminates the singularity of the left-hand side of (27). 
Two remarks are in order. The nonlinear last term in 
(35) would have appeared identically in (27) had it been 
retained. When 10[ << [R I, the difference between (27) 
and (35) is second order in that quantity. 

We also note that the way (34) is solved makes it very 
difficult to incorporate constraints into the solution and 
to deal with missing reflections. Also, it is clear that at 
most half of the density is recovered. Somewhat similar 
analyses were published many years ago (Cochran, 1951; 
Main, 1979). Yet another way to analyze (34) is to notice 
that the difference Fourier method cannot correct the 
phases of the reflections. Thus, it must always be used 
with a nonlinear alternative filtering method to produce 
the correct phases of the crystal structure. 

The convergence and accuracy of the difference 
Fourier algorithm can also be discussed using (35). 
Two compounded problems hinder the accuracy of 
reconstruction by the method. The first is the dual image, 
or 'garbage' term; if the missing density is not sparse, 
i.e. if it occupies a sizable region of the unit cell, it 
can be difficult to distinguish between the good and the 
bad solutions. The second problem is that the Fourier 
transform of I R I/(IF I + I R I) is not a delta function; in 
fact, the smaller R is and the less it resembles F,  the 
more it gets spread out. 

This analysis establishes clearly the greater accuracy 
of the holographic method. The advantages of the dif- 
ference Fourier algorithm are its widespread availability 
and its simplicity. Its speed may be illusory for difficult 
problems: in all cases, the holographic method gives a 
better solution and the nonlinear filtering required for the 
difference Fourier method may take considerably more 
human intervention and effort. 
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(b) Multiple isomorphous replacement 

It is shown that the holographic method can be 
adapted to the solution of crystal structures by multiple 
isomorphous replacement (MIR). The diffraction pattern 
of a crystal with heavy-atom substitution of 'kind' k for 
several substituents (1 _< k <_ K)  is denoted IFk(h)l 2. 
The diffraction pattern of the native protein is denoted 
[O(h) [2, for obvious reasons. The accepted way of using 
MIR is first to find the heavy atoms in each substituted 
structure by Patterson search techniques or by direct 
methods, then to use the phases of some reflections, 
calculated from the known positions of the heavy atoms, 
in standard 'phase-extension' techniques to complete the 
structure. 

If the positions of the heavy atoms have already 
been determined, the holographic method can be used 
in MIR. It should be emphasized that our equations 
are essentially equivalent to the accepted ones. The 
positions of the heavy atoms, being known, can be used 
to calculate a 'reference' structure factor using (7). Such 
a reference, Rk (h), should be calculated for each heavy- 
atom replacement separately. Then, K sets of equations 
of the form of (9) can be written: 

IFk(h)l 2 = IRk(h)l 2 + Rk(h)O*(h) + R~(h)O(h)  

+ IO(h)[ 2, 1 < k < K. (36) 

Note that O(h) does not have a subscript: the same 
native structure appears in all K sets of equations. 
Collection of all known terms on the left-hand side 
gives 

IFk(h)l 2 - IRk(h) l  2 - I O ( h ) l  2 

= Rk(h)O*(h) + R~(h)O(h) ,  1 __ k <_ K. 
(37) 

The derivation can be continued as outlined in § 1 to 
yield a set of K equations similar to (17), 

P 

Hk(h) = ~_.nvMp(k)(h), 1 <_ k <_ K, (38) 
p=l 

where 

Hk(h) = IFk(h)l 2 - IRk(h) l  2 --IO(h)l e ( 3 9 )  

and the matrices Mp(k)(h) are, for Gaussian basis func- 
tions, the same as in (15): 

Mp(k) (h) = exp I-r/(TrAr I-T" Th[) 2 ] 

x [Rk(h) exp (-27rih.grr , )  

+ R ~ (h) exp (27rih'gVrp)]. (40) 

If more than one isomorphous replacement is successful, 
it follows from our discussion in § 3(a) that there are 

enough equations to determine the structure without 
ambiguity. It is expected that the use of positivity 
constraints will stabilize (38) even further. The MIR 
equations are truly linear: no approximations are needed 
to derive (38). The holographic method for MIR has 
a 'consistency check' built in; thus, the phases of the 
weaker reflections become as accurate as those of the 
strong ones. With ideally accurate reflection data, (38) 
can be solved without iterations to yield the electron den- 
sity of the molecule. Our discussion in § 3(d) indicated 
that the sensitivity of the solution of the holographic 
equations to noise and to inaccuracy of the data is 
optimal. With restriction of the solution space to exclude 
the near vicinity of the heavy atoms (which may be 
distorted by the substitution) and the subsequent solution 
of the rest of the structure, the number of good atomic 
positions obtained may be sufficient for the rest of the 
structure to be easily solved from the native structure 
alone. In this way, the holographic method may become 
quite insensitive to local distortions of a crystal. Also, 
the positions of the heavy atoms can be refined by 
iteration. This subject is discussed further in § 4(d). The 
demonstration of these properties will be a subject of 
further investigation. 

(c) (Multiple) anomalous dispersion 

Recent publications have reviewed the method of 
multiple anomalous dispersion (MAD) (Hendrickson, 
1991; Foumae & Hendrickson, 1990; Karle, 1989). It 
is emphasized that the equations for MAD are the 
closest in spirit and information content to the holo- 
graphic equations presented in this paper. In very simple 
terms, if the incident X-ray energy is tuned across an 
absorption edge of an atomic species, the number of 
scattering electrons changes and, at some wavelengths, 
these electrons also contribute a significant phase shift to 
the scattering amplitude. These changes in the scattering 
amplitude cause a wavelen~-dependent change in the 
measured intensities, IF(h)[ . If the diffraction pattern is 
measured at several wavelengths, the 'anomalous' part 
of the scattering intensities can be obtained. Patterson 
or direct methods can be used to locate the anomalous 
scatterers. As a result, the situation is similar to that of 
MIR, discussed above. 

Let us denote, in the notation of Hendrickson (1991), 
the part of the structure factor arising from anomalous 
scattering Fa and the part that arises from the normal 
components (i.e. the part that does not vary with X-ray 
energy) FT. It is easy to see that, if the locations of the 
anomalous scatterers are found, the resulting equations 
for the holographic method are exactly analogous to (37). 
They can be written as 

IFK+I(h)I 2 --[RK+I(h)I 2 --IO(h)l  2 
= RK+l(h)O*(h) + R/c+l(h)O(h),  (41) 
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where ]FK+I(h)I 2 = IFA(h) + FT(h)I ~- is the observed 
diffraction pattern at an X-ray wavelength where anoma- 
lous scattering is large, IO(h)l 2 = IFT(h)l 2 is the 
diffraction pattern observed at an X-ray wavelength 
where anomalous scattering is small and Rs-+l(h) is 
the structure factor calculated from the known positions 
of the anomalous scatterers using only their anomalous 
contributions to the scattering. Similar equations can be 
written for any pair of X-ray wavelengths. 

The holographic method, while equivalent to the 
traditional methods of solving (37) and (41), could 
nevertheless become useful. First, it shows very clearly 
the magnitude of the reference obtained from anomalous 
scattering. (It is the anomalous part of the anomalous 
scatterers.) Second, it allows an optimal solution of the 
resulting equations, as discussed in § 3. Third, it treats 
MIR and MAD on an equal basis: the equations from 
anomalous scattering can be easily combined with those 
from MIR to form a larger set. (When this is done, 
the space of the unknown atoms should be restricted 
to exclude the anomalous scatterers.) 

(d) Molecular replacement 

In this paper, the term molecular replacement is used 
to mean that part of the unknown molecule is identical in 
structure to a known molecule or fragment. If the exact 
position of the known fragment is also known, it can 
obviously be used as the reference in the holographic 
reconstruction. If its position is not known, a rotational 
and translational search has to be carded out. For a recent 
reference, see, for example, Briinger (1991). The use 
of the holographic method may improve techniques of 
molecular replacement in two obvious ways. First, the 
high accuracy of the holographic method may enable the 
completion of a crystal structure from a smaller known 
fragment than is currently possible. Second, as part of 
the search, a reconstruction can be attempted for each 
translational and rotational position and the correctness 
can be judged from the quality of this reconstruction. A 
potentially far-reaching possibility is that the structures 
of molecules that are fairly similar to each other could 
be solved relatively easily. 

(e) Noncrystallographic symmetry 

If noncrystallographic symmetry is present in a crys- 
tal, the diffraction pattern, rotated by the noncrystallo- 
graphic symmetry operator, gives additional information 
about the molecule (Rossmann & Blow, 1963; Millane, 
1990). In the holographic method, this information can 
be incorporated naturally. The unknown number of elec- 
trons in symmetry-related positions must be the same. 
Therefore, the number of unknowns is reduced, while 
the number of independent equations remains the same. 
According to our estimates in § 3(a), a single degree of 

noncrystaUographic symmetry should result in a perfect 
reconstruction. 

(f) Solvent flattening 

Solvent flattening introduces the knowledge that a 
sizable fraction of the unit cell, namely a region occupied 
by disordered solvent, has a uniform electron density. In 
the holographic method, it is very simple to incorporate 
this information: the electron density is simply set to a 
constant in those regions. This constant value is con- 
sidered to be part of the known structure; the structure 
factors calculated from it are part of the reference and 
the solution space of the unknown part is restricted to the 
regions not occupied by the solvent. By and large, this 
should stabilize the solutions by the ratio of the volume 
of the solvent to the volume occupied by the molecule. 

5. Summary 

This paper has presented a detailed theoretical discussion 
of the holographic method for the completion of crystal 
structures when part of the structure is known, at least 
approximately. The method stems from the observation 
that the interference term between the scattered waves 
from the known and the unknown parts of the unit cell 
dominates the X-ray diffraction pattern. The phase of 
the interference term depends, in turn, on the relative 
positions of the known and unknown parts. Therefore, 
the position of the unknown part can be recovered. The 
same principle essentially forms the basis of holography 
in optics and of heterodyne reception in radio waves. 

The accepted way of reconstructing the structure of 
the scatterer from a hologram follows the original insight 
of Ghbor (1948, 1949). The hologram is 'illuminated' by 
a replica of the reference wave. The wave transmitted 
through the hologram contains a component that is 
a replica of the scattered wave. If this component is 
propagated backwards into the region of the scatterer, 
the intensity of the back-propagated wave is taken as an 
indication of the density of scatterers at that position. 
An alternative method, necessary for a very nonuniform 
reference beam, is suggested in this paper. It asks the 
question: what are the positions and strengths of the 
scatterers that give rise to the measured diffraction 
pattern? This transforms the holographic reconstruction 
problem into a typical inverse problem. 

The analogy with holography can be carded further. 
The concept of the dual (or twin) image is useful 
in discussing difficulties with the recovery of crystal 
structures. It is shown that the most general image 
recovered is a superposition of the correct image and 
its dual in indefinite proportions. The dual image can be 
eliminated only by the use of external information. When 
the fraction of the known part is small, the reconstruction 
becomes less stable, as expected. 
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Similar inverse problems are common ~n signal pro- 
cessing, in image recovery and in tomography - to name 
but a few areas. Mathematical discussion shows that 
the X-ray crystallographic problem lacks some of the 
necessary information for stable recovery. In addition, 
like most of the above-mentioned inverse problems, it is 
ill conditioned and can be solved only by minimization 
of the discrepancy between the observed and calculated 
diffraction patterns. It is stressed that these difficulties 
are inherent in the task at hand and are not a consequence 
of our particular approach. Two ways of trying to deal 
with this lack of information are introduced. The first 
one is to use what is available: the solution produced is 
the best available superposition of 'recoverable' objects 
only. In the language of linear equations, the unknown 
part of the structure is then a combination of vectors 
outside the null space of the encoding operator. 

The second method of attempting to deal with the 
lack of information is to supplement the missing data by 
extraneous information. Additional information comes in 
many varieties. One of them is knowledge of the spatial 
extent of the unknown structure. This is the information 
used in solvent flattening and, partly, in molecular re- 
placement. Further information that is always available 
is the positivity of the electron density everywhere. 
This is equivalent to ensuring that the Karle-Hauptman 
determinants are all positive - a formidable task in 
reciprocal space. All of these are easily incorporated into 
our method. It is argued, although not rigorously, that 
when the unknown part is small enough and the known 
part is 'good' enough, the positivity constraint may 
provide enough information to stabilize the equations. It 
is also conjectured that it may be possible to incorporate 
more detailed chemical information into the equations. 

The fourth section of this paper compares the holo- 
graphic method with other methods of crystallography, 
the main goal being to show that the holographic method 
should be no worse, and may be better, than some 
accepted methods. It is shown analytically that the dif- 
ference Fourier method is less accurate than our method. 
We conclude that for difficult problems our method may 
be preferable. The holographic equations for multiple 
isomorphous replacement and for anomalous scattering 
are equivalent to the accepted equations. Even if multi- 
ple isomorphous replacement and anomalous scattering 
are used together, which is the prevalent practice, the 
holographic method may have some advantages because 
it can easily incorporate both consistency and positivity. 
The success and accuracy of molecular replacement may 
similarly be improved by use of the holographic method. 

In paper III (Maalouf, Hoch, Stem, Sz6ke & Sz6ke, 
1993), modest numerical studies are presented that shed 
further light on some of the properties of the holo- 
graphic method. These studies give at least empirical 
confirmation of some of our conclusions. In addition, 
a calculation is presented that uses experimental data 
in an 'easy' case. In a later publication, results will be 

presented for much 'harder' and more realistic crystal- 
lographic problems (Goodman, Sz6ke, SzSke, Somoza 
& Kim, 1993). We hope that the use of our newly 
developed fast algorithm will make it possible to test 
our assertions numerically and treat practical cases. 
Holography-based methods may then become useful 
tools in crystallography. 

The author thanks R. B. Laughlin and Pierre Beran 
for very helpful criticism, and David Donoho, David 
Baker and Dilano Saldin for interesting discussions and 
for provision of their work prior to publication. 
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Abstract 
The holographic method for the completion of crystal 
structures, described in paper II [Szfke (1993). Acta 
Cryst. A49, 853-866], is implemented numerically. The 
purpose of these modest calculations is to show that 
the holographic method can handle real crystallographic 
data in easy problems and to test various algorithms 
for its implementation. Both synthetic and experimental 
data are used and sources of  error are systematically 
introduced. The numerical  experiments support the the- 
ory presented in paper II and show that the holo- 
graphic method may be a potentially viable alternative 
to conventional  methods for the complet ion of  crystal 
structures. 

Introduction 
An alternative method for the complet ion of  crystal 
structures, the holographic method, was described in 
papers I and II of  the series (SzSke, 1992, 1993). 

* This work was performed partly under the auspices of the US 
Department of Energy, under contract no. W-7405-ENG-48 (LLNL). 
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Paper II gives a detailed derivation of the method 
and a brief discussion of the algorithms used to solve 
the holographic equations, together with some of their 
mathematical properties. This paper presents modest 
first results obtained using the holographic method on 
computers. As newcomers  to crystallographic data pro- 
cessing, our aim was to place the method on a firm 
footing and to prepare for more detailed comparisons 
with established methods. Our computational  efforts 
were directed in two complementary directions. 

In the first case, we wanted to demonstrate that the 
holographic method can handle real crystallographic 
data, using slight modifications to an existing crystallo- 
graphic program. For this we chose an 'easy '  problem: 
bovine pancreatic trypsin inhibitor (BPTI), with one of  
the amino-acid side chains removed. Using two test 
cases, one employing model  data and the other experi- 
mental data, our goal was to show that the holographic 
method could correctly complete the crystal structure by 
reconstruction of  the missing side chain. 

In the second case, we performed extensive tests on 
simple ( ' toy ' )  models for crystallographic problems. Our 
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